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Abstract

Minimax solutions are weak solutions to Cauchy problems involving Hamilton–Jacobi equations,
constructed from generating families quadratic at infinity of their geometric solutions. We give a
complete description of minimax solutions and we classify their generic singularities of codimension
not greater than 2.
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1. Introduction

Hamilton–Jacobi equations play an important role in many fields of mathematics and
physics, as for instance calculus of variations, optimal control theory, differential games,
continuum mechanics and optics.

Let us consider a Cauchy problem involving a Hamilton–Jacobi equation. For small
enough timet the solutionu is classically determined using the characteristic method.
Althoughu is initially smooth, there exists in general a critical time beyond which char-
acteristics cross. After this time, the solutionu is multivalued and singularities appear.
Therefore, the problem how to extract “true solutions” from multivalued solutions naturally
arises.
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In 1991 Chaperon proposed in[4] a geometric method to construct weak solutions to
Hamilton–Jacobi equations, called minimax solutions (see also[13]). Their definition is
based on generating families quadratic at infinity of Lagrangian submanifolds. The minimax
solutions have the same analytic properties as the viscosity solutions, namely existence
and uniqueness theorems hold. However, minimax solutions are in general different from
viscosity solutions.

This paper is organized as follows. The first part is a survey on minimax solutions. In
the second part we study the small codimension generic singularities of minimax solutions.
Namely, we prove that the singularities of codimension not greater than 2 of minimax
solutions and viscosity solutions are the same. This result may be useful to find examples
in which minimax solutions have physical meaning.

The survey part of the paper is mainly based on a talk I have given for the “Trimester on
Dynamical and Control Systems” at SISSA-ICTP in Trieste. I thank Andrei Agrachev for
its kind invitation.

2. Minimax of functions quadratic at infinity

Let E be the spaceRn andf : E → R a smooth function having a finite number of
critical points. We supposef quadratic at infinity, that isf is a non-degenerate quadratic
form outside a compact set. Forλ ∈ R, we set

Eλ := {ξ ∈ E : f(ξ) ≤ λ}.
Let us fix a ∈ R, big enough for that(−a, a) contains all the critical values off . Then
we setE±∞ := E±a. Let us denote byρλ the restriction mappingsE → Eλ, inducing
the homomorphismρ∗

λ : H̃∗(E,E−∞) → H̃∗(Eλ,E−∞) between the relative reduced
Z-homology groups. The quotient spaceE/E−∞ is homeomorphic toSq, whereq denotes
the index of the quadratic part off at infinity. Hence, the only non-trivial reduced homology
group isH̃q(E,E

−∞)  Z. Fix a generatorγ of this group.

Definition 1. Theminimaxof f is the real number

min max(f) := inf {λ ∈ R : ρ∗
λγ �= 0}.

The infimum defining the minimax exists and it is finite, indeedρ∗
λγ = γ �= 0 and

ρ∗
−λγ = 0 wheneverλ > a; it does not depend on the choice of the generatorγ. Moreover,

the minimax of a function is a critical value, since by definition the topology of the sublevel
setsEλ changes whenλ crosses the minimax value.

Since the minimax level is stable under small deformation of the function (see[2]), we
may assume without loss of generality thatf is generic. Genericity conditions mean that all
the critical points off are of Morse type and all its critical values are different. Therefore,
every critical point has anindex, which is the number of negative signs in the Morse normal
form of the function at the critical point.

Morse theory (see[9]) describes how the topology of the sublevels setsEλ changes when
λ changes. Namely,Eλ is diffeomorphic toEµ, provided that[λ,µ] does not contain critical



460 G. Capitanio / Journal of Geometry and Physics 52 (2004) 458–468

values. On the other hand,if [λ,µ] contains only one critical value, thenEµ retracts on the
space obtained fromEλ attaching to its boundary a cell of dimension equal to the index of
the critical point realizing the critical value. Hence, every generic function onE defines a
cell decomposition of the space and there is a 1:1 correspondence between its cells and the
critical points of the function.

Let us recall that theincidence coefficientof two cells in this decomposition is the degree
of the restriction of the attaching map from the higher dimension cell to the lower dimension
cell (see[6]). The incidence coefficient[ξ : η] of two critical pointsξ andη of f is the
incidence coefficient of the corresponding cells. Note that [ξ : η] �= 0 implies that ind(ξ) =
ind(η) + 1 andf(ξ) > f(η). For example, the two critical points off(ξ) = ξ3 − εξ have
non-zero incidence coefficient forε > 0.

The incidence coefficient of pairs of critical points leads to a natural partition of the
critical setΣ of f in the following way. Denote byC1 a pair of critical points realizing the
minimum of the set

{f(ξ) − f(η) : ξ, η ∈ Σ, [ξ : η] �= 0}.
Then define by inductionCi+1 from C1, . . . , Ci as a pair of critical points realizing the
minimum of the set

{f(ξ) − f(η) : ξ, η ∈ Σ \ (C1 ∪ · · · ∪ Ci), [ξ : η] �= 0}.
In this way, we decompose the critical set into the disjoint union of pairsCi and a setF
which contain no incident critical points, i.e. [ξ : η] = 0 for everyξ, η ∈ F .

Definition 2. Two critical points arecoupledif they belong to the same pairCi in the
preceding decomposition; a critical point isfree if it belongs toF .

In [2] we proved the following result.

Theorem 3. Every generic function quadratic at infinity has exactly one free critical point,
and its value is the minimax.

3. Geometric and multivalued solutions

In this section we introduce the symplectic framework for the geometric and multivalued
solutions of Hamilton–Jacobi equations. LetX be a closed manifold of dimensionn, π :
T ∗X → X its cotangent bundle, endowed with the standard symplectic form dλ, where
λ is the Liouville’s 1-form. In local coordinatesT ∗X = {x, y}, we haveπ(x, y) = x and
λ = y dx. A dimensionn submanifold ofT ∗X is said to beLagrangianwhenever dλ
vanishes on it. Two Lagrangian submanifolds areHamiltonian isotopicif there exists a flow
generated by a Hamiltonian field, transforming one into the other. Hamiltonian isotopies
transform Lagrangian submanifolds into Lagrangian submanifolds. Agenerating familyof
a Lagrangian submanifoldL ⊂ T ∗X is a smooth functionS : X × R

k → R such that

L = {(x, ∂xS(x; ξ)) : ∂ξS(x; ξ) = 0},
whereS verifies also the rank condition rk(∂2

ξξS, ∂
2
ξxS)|∂ξS=0 = max.
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Given a generating familyS, the following operations give rise to new generating families
T of the same Lagrangian submanifold:

(1) addition of a constant: T(x; ξ) = S(x; ξ) + C for C ∈ R;
(2) stabilization: T(x; ξ, η) = S(x; ξ) + Q(η), whereQ is a non-degenerate quadratic

form;
(3) diffeomorphism: T(x; η) = S(x; ξ(x, η)), where(x; η) �→ (x, ξ(x, η)) is a fibered dif-

feomorphism with respect to the coordinatex.

Two generating families areequivalentif one can obtain one from the other by a finite
sequence of the preceding operations. A generating familyS is quadratic at infinity(gfqi)
if there exists a non-degenerate quadratic formQ such thatS(x; ξ) = Q(ξ), whenever|ξ|
is big enough (uniformly inx).

Theorem 4 (Sikorav–Viterbo[10–12]). Every Lagrangian submanifold ofT ∗X, Hamilto-
nian isotopic to the zero section{(x; 0) : x ∈ X}, admits a unique gfqi modulo the preceding
equivalence relation.

Remark 5. The theorem still holds in the case of non-compact manifolds, provided that
the projection of the Lagrangian submanifold into the base is 1:1 outside a compact set.

A Lagrangian submanifoldL ⊂ T ∗X is exactif the Liouville’s 1-form is exact on it. In
this case, we can liftL to a Legendrian submanifold in the contact spaceJ1X of 1-jets over
X. This lifting projects into a wave front in the spaceJ0X  X× R = {x, z} of 0-jets over
X, defined up to shifts in thez-direction.

If S is a gfqi ofL, then the corresponding wave front is the graph ofS

{(x, S(x; ξ)) : ∂ξS(x; ξ) = 0}.
Graphs of equivalent gfqi are equal up to a translation along thez-axis. The points for which
the natural projection “forgettingz” of the graph intoX is not a fibration form a stratified
hypersurface inX, provided thatL is generic.

We may now define generalized solutions to Hamilton–Jacobi equations. LetQ be a
closed manifold. We consider the following Cauchy problem onQ involving a Hamilton–Jacobi
equation:

(CP)

{
∂tu(t, q) + H(t, q,Dqu(t, q)) = 0, ∀ t ∈ R

+, q ∈ Q,

u(0, q) = u0(q), ∀ q ∈ Q.

The HamiltonianH : R
+×T ∗Q → R is supposed of classC2 onR

+×T ∗Q and continuous
at the boundary; the initial conditionu0 : Q → R is assumed to be of classC1.

Let M := Q × R be the space–time manifold andT ∗M = {t, q; τ, p} its cotangent
bundle (endowed with the symplectic form dp ∧ dq + dτ ∧ dt). We consider the flow
Φ : R

+ × T ∗M → T ∗M, generated by the HamiltonianH : T ∗M → R defined by
H := τ + H , and the submanifold

σ := {(0, q; −H(0, q, du0(q)), du0(q)) : q ∈ Q} ⊂ H−1(0) ⊂ T ∗M.
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Definition 6. Thegeometric solutionof (CP) is the submanifold

L :=
⋃
t>0

Φt(σ) ⊂ T ∗M.

It turns out that the geometric solution to (CP) is an exact Lagrangian submanifold,
contained into the hypersurfaceH−1(0) and Hamiltonian isotopic (for finite times) to the
zero section ofT ∗M (see[2]). Hence, the Sikorav–Viterbo theorem guarantees that it has
a unique gfqi modulo the equivalence relation. Up to a suitable constant, we may assume
that the graph of the gfqi restrained att = 0 is equal toσ. We denote byS such a gfqi.

Let us consider now the projection pr :T ∗M → T ∗Q, defined locally by pr(t, q; τ, p) :=
(q, p). We callgeometric solution at timet of (CP) the exact Lagrangian submanifoldLt :=
pr◦Φt(σ) ⊂ T ∗Q, which is an isochrone section of the global geometric solution. It is easy
to check thatLt is Hamiltonian isotopic to the zero section, so, by the uniqueness theorem,
its gfqi isSt(q; ξ) := S(t, q; ξ).

Definition 7. The graph ofS (resp.,St) will be called themultivalued solution(resp.,at
timet) to (CP).

Remark 8. It is possible to construct global generating families of geometric solutions as
follows. Theaction functional

∫
pdq−H dt is a global generating family, whose parameters

belong to an infinite dimension space. By a fixed point method, proposed by Amann, Conley
and Zehnder, one can obtain a true generating family (with finite dimensional parameters),
see[3].

4. Minimax and viscosity solutions

In this section we introduce minimax solutions to Hamilton–Jacobi equations, and we
discuss their properties and relations with viscosity solutions. LetS be the gfqi of the
geometric solution to (CP). For every fixed point(t, q) in the space–time, the function
St,q is quadratic at infinity, so we may consider its minimax critical values, defined in
Section 2.

Definition 9. Theminimax solutionto (CP) is the function defined by

u(t, q) := min max(St,q).

Remark 10. For a Cauchy problem (CP) on a non-compact manifold, as for instance for
Q = R

n, we define the minimax solution as follows. Let(Hn)n be a sequence of smooth
Hamiltonians with compact support in the variablesq. Then, at any Cauchy problem defined
by Hn and the given initial condition, we may associate its minimax solutionUn, defined
as above. By definition, the minimax solution of (CP) is the limit of the solutionsUn for
n → ∞.
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Theorem 11 (Chaperon[4]). The minimax solutions are weak solutions1 to (CP), Lipschitz
on finite times, which do not depend on the choice of the gfqi.

We end this section discussing the relations between minimax and viscosity solutions.
Viscosity solutions to Hamilton–Jacobi equations have been introduced by Crandall and
Lions in [5], following the generalization proposed by Kruzhkov of the Hopf’s formulas.

Theorem 12 (Joukovskaïa[8]). The minimax and the viscosity solutions of(CP) are equal,
provided that the Hamiltonian defining the equation is convex or concave in the variable p.

Izumiya and Kossioris constructed in[7] the viscosity solution beyond its first critical
time. Actually, they proved that the Lagrangian graph of the viscosity solution is not al-
ways contained into the geometric solution of the equation. Hence, minimax and viscosity
solutions are in general different.

5. Characterization of minimax solutions

In order to describe a useful characterization of minimax solutions (first presented in[2]),
we start introducing some standard notations concerning unidimensional wave fronts.

Let J0
R  R

2 = {(q, z)} be the space of 0-jets overR andπ0 : J0
R → R the natural

fibration (q, z) �→ q. A wave frontin J0
R is the projection of an embedded Legendrian

curve in the contact spaceJ1
R  R

3 = {(q, z, p)} under the projectionπ1 : (q, z, p) �→
(q, z). The only singularities of generic wave fronts are semicubic cusps and transversal
self-intersections. Two embedded Legendrian curves inJ1

R areLegendrian isotopicif there
exists a smooth path joining them in the space of the embedded Legendrian curves. In this
case their projections are also called isotopic. A front islong if it is the graph of a smooth
function outside a compact set ofR; it is flat if its tangent lines are nowhere vertical. A
sectionof a flat front is a connected maximal subset which is the graph of a piecewiseC1

function; abranchis a smooth section. The generic perestroikas occurring to flat wave fronts
under isotopies among flat fronts are the following (illustrated inFig. 1): cusp birth/death,
triple intersection, andcusp crossing.

We come back now to the Cauchy problem (CP) in the caseQ = R. We assume that
its geometric solution is a generic Lagrangian curve. A multivalued solutionΣ of (CP) at
a generic time is a flat wave front, isotopic to{(q,0) : q ∈ R}. Up to replace our Cauchy
problem with a sequence of problems approximating it, we may assume also thatΣ is a long
wave front, and that it is the graph of a gfqi, denoted byS, of the geometric solution. Hence,
every branch of the multivalued solution is realized by a critical point ofSt,q (depending on
q as a parameter).

The indexof a branch is by definition the index of its corresponding critical point minus
the index of the quadratic part ofS. The index of a branch does not depend on the choice
of the gfqi. The non-compact branch ofΣ has index 0, as well as the minimax section.

1 A weak solution to(CP) is a continuous and almost everywhere derivable function, which solves in these points
the Hamilton–Jacobi equation; moreover, its restriction att = 0 is equal to the initial condition.
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Fig. 1. Generic singularities of flat fronts under Legendrian isotopies.

Fig. 2. The frontΣ − T .

Moreover, the index changes by+1 (resp.,−1) passing through a positive cusp2 (resp.,
negative cusp). A double point ofΣ is calledhomogeneouswhenever it is the intersection
of two branches having the same index.

The partition of the critical set of a generic function quadratic at infinity we give in
Section 2leads, byTheorem 3, to a decomposition of the multivalued solution into the
graphµ of the minimax solution and the pairsXi of coupled sections, formed by the
sections corresponding to coupled critical points of the gfqi:Σ = µ ∪ ⋃

i Xi. Indeed,
whenq runs onR, every pair of coupled critical points ofSt,q moves on the front along
two sections, forming a closed curve. The curvesXi are homeomorphic to a disc bound-
ary, they have exactly two cusps and no self-intersections. They are almost everywhere
smooth and only continuous at homogeneous double points of the multivalued solution
(see[2]).

Any homogeneous double point of an oriented multivalued solution defines in it a closed
connected curve. Such a curve is called atriangle whenever it has exactly two cusps. The
double point is thevertexof the triangle. LetT be a triangle ofΣ. Fix an arbitrary small
ball centered at the vertex ofT , intersecting only the two branches containing the double
point. We denote byΣ − T a long flat front equal toΣ \ T outside the ball and smooth
inside it (seeFig. 2).

2 A cusp ispositive(resp.,negative) if, following the orientation of the front, we pass from a branch to the other
according to the coorientation defined by the positivez direction.
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Fig. 3. The multivalued solutionsΣ andΣ′ in Example 15.

Definition 13. A triangleT of Σ is vanishingif there exists a Legendrian isotopy joining
Σ andΣ − T among long flat fronts without homogeneous triple intersections.

The following theorem (see[2]) provides an effective method to simplify recursively a
given multivalued solution. After a finite number of steps, we get a front, which is actually
the graph of the minimax solution to the initial problem.

Theorem 14. LetΣ be a multivalued solution andµ ∪ X1 ∪ · · · ∪ XN its decomposition
into minimax section and coupled sections. ThenΣ is smooth or has a vanishing triangle T
among the curvesXi. In this case, the decomposition ofΣ − T is induced by that ofΣ. In
particular, the minimax ofΣ andΣ − T are equal outside the ball centered at the vertex
of the vanishing triangle.

Example 15. Consider the multivalued solutionΣ depicted inFig. 3. The homogeneous
double pointsB, C, D, F , G andI are not vertices of triangles. The trianglesTE andTL of
verticesE andL are vanishing, while those of verticesA, H andM are not. Indeed, to cut
off TA andTM we must pass through a self-tangency, while to cutTH we must pass through
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a homogeneous triple intersection atF . The minimax ofΣ is equal (outside two arbitrary
small balls centered atE andL) to the minimax ofΣ′ := Σ − TE − TL. Now,B andI
define two vanishing trianglesTB andTI ; Σ′ − TB − TI is smooth, so it is the minimax
section ofΣ outside two arbitrary small balls centered atB andI.

6. Singularities of minimax solutions

In this section we classify the generic singularities of small codimension arising in min-
imax solutions to Hamilton–Jacobi equations. This classification is made with respect to
the left–right equivalence, fibered on the time direction, defined below. Let us consider two
functionsf, g : R × R

n → R. We denote byt the coordinate inR and byq = (q1, . . . , qn)

the coordinate inRn.

Definition 16. Let a, b be two points of the space–timeR×R
n. The germ off ata and the

germ ofgatbare said to beequivalentif there exists two diffeomorphism germsφandψ such
thatψ ◦f ◦φ−1 = g andφ is fibered with respect to the time axis:φ(t, q) = (T(t),Q(t, q)).

A singularityof a function germ for this equivalence relation is its equivalence class. A
Cauchy problem onQ = R

n is said to begenericif its geometric solution is generic as
Lagrangian submanifold; its minimax solution is also calledgeneric.

In [8], Joukovskaïa proved that the singular set of any generic minimax solution (formed
by the points where the solution is notC1) is a closed stratified hypersurface, diffeomorphic
at any point to a semi-algebraic hypersurface.

Theorem 17. Let u be a generic minimax solution and(t, q) a point belonging to a stratum
of codimensionc = 1 or 2 of its singular set. Then the germ of u at(t, q) is equivalent to
one of the map germs in the table below.

c Normal form

1 |q1|
2 min{|q1|, t}
2 min{Y4 − tY2 + q1Y : Y ∈ R}

The images of these normal forms (in the casen = 2) are depicted inFig. 4. Note that
these singularities are stable. These map germs are also the normal forms of the generic
singularities (of codimension not greater than 2) of viscosity solutions (whose classification
has been done by Bogaevski in[1]).

Joukovskaïa studied in[8] the generic singularities of minimax functions, defined as
minimax levels of Lagrangian submanifold’s gfqi which are not necessarily geometric
solutions of Hamilton–Jacobi equations. To proveTheorem 17, we will show that some
singularities in Joukovskaïa’s list do not arise in minimax solutions. In order to do this, let
us recall her theorem.
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Fig. 4. Small codimension generic singularities of minimax solutions.

Theorem 18 (Joukovskaïa[8]). Any generic minimax function onR × R
n is equivalent, at

any point in a codimension2 stratum of its singular set, to one of the map germs listed in
Theorem 17(for c = 2) or to one of the following map germs:

(a) (t; q1, . . . , qn) �→ max{t,−|q1|};
(b) (t; q1, . . . , qn) �→ min{|q1|,max{−|q1|, t}}.

The images of the map germs (a) and (b) are shown inFig. 5.
We shall prove nowTheorem 17. Notice that we may assumen = 1 without loss of

generality. Let us consider a multivalued solution having a singularity (a) or (b). In both
cases, there are three 0-index branches crossing at the singular point (settled at the origin).
Fix an arbitrary small neighborhoodU of the origin inR; then for every small enough time
t < 0, the isochrone multivalued solution at this time takes, over the corresponding section
of U, the configuration illustrated in the left part ofFig. 6; moreover, all the other sections
of the front decomposition are smooth overU. The minimax sectionµ has three jumps in
A,B andC, shrinking to the homogeneous triple point at the origin ast goes to 0. Actually,

Fig. 5. Further generic singularities of minimax functions.
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Fig. 6. Multivalued solution configurations near the singular point.

the jumpsA andC belong to the same section, denoted byα in the figure. ByTheorem 14
we may recursively eliminate the vanishing triangles in the multivalued solution changing
neither the minimax section nor the other pairs of coupled critical points. Hence, after a
finite number of such operations, the front is composed by the minimax section, the section
α and its coupled sectionα∗, see the right part ofFig. 6. This front is not isotopic to the
trivial front {(q,0) : q ∈ R}. Hence, multivalued solutions cannot have singular points of
type (a) or (b).Theorem 17is now proven.
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